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The rotating disk has many engineering applications as in #oppy, hard, compact, laser,
and recently optical disk drives. This paper (Part II) considers the application of a "nite
element method presented in a companion paper (Part I) to the analysis of rotating disks.
The critical speed of the disk is obtained to validate the problem formulation and solution
method. Dynamic responses are obtained as parameterized by the rotating speed. E!ects of
the temperature distribution and material system are also observed. Thermal e!ects are
crucial in the analysis of rotating disks, since the variation of temperature can be signi"cant.
This is especially true for equipment in which a heat source is used as a means of recording
or erasing data and for equipment in which the amount of generated or transferred heat is
signi"cant. The specially orthotropic material properties of a laminated disk can have
a large e!ect on the overall dynamic behavior.

( 2000 Academic Press
1. INTRODUCTION

This paper (Part II) considers the application of the "nite element method, as presented in
a companion paper (Part I), to the dynamic analysis of rotating disks. The e!ects of
transverse forces, heat sources, and orthotropic material properties are considered.

In section 2, the dynamics of a rotating disk is analyzed for several materials typical of
a #oppy disk, and an aluminum annular plate. Critical speeds are obtained for veri"cation
of the "nite element formulation. In section 3, optical disks are studied. Dynamic responses
and the natural frequencies are obtained for both the cases where the temperature e!ects are
ignored and considered. It is shown that the temperature distribution is very important in
the analysis of an optical disk. One way of reinforcing optical disks is by using a laminate
composed of the material of the optical disk and of aluminum. Not only is such a laminate
far sti!er than typical optical disks, but the thermal e!ect on the dynamics of a rotating disk
becomes remarkably reduced. The specially orthotropic material properties are obtained
based upon the homogenization method and used for the simulation of the dynamics of
laminated disks. This is an important application problem in its own right, and a special
case of general theory developed in Part I. Finally, section 4 contains the conclusions.
sCurrently with Goldstar Corp.
tOn leave from Kuwait University.

0022-460X/00/380487#18 $35.00/0 ( 2000 Academic Press



488 H. SON E¹ A¸.
2. DYNAMICS OF A ROTATING DISK

The dynamics of rotating disks are considered here. The con"guration of the disk and the
problem are illustrated in Figure 1 in part I, where R

o
and R

i
are the outer and inner radii,

and h is the thickness.
The critical speed for divergence instability is obtained for the system matrices obtained

by the software developed here for the purpose of veri"cation. Since the consistent sti!ness
matrix and damping (gyroscopic) matrix already contain the contributions of the geometric
body forces at a given state (see Part I, Appendix A), it is possible to obtain the eigenvalues
as parameterized by the rotating speed of the disk.

The second order ordinary di!erential equations of the form

MxK#Gx5 #Kx"0 (1)

are transformed into state-space form as follows:

y5 "Ay, A"C
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The eigensystem subroutine package eispack is utilized. For a plate problem, the mass
matrix and sti!ness matrix has elements of O(h) and O(h3). This causes the problem of
a large condition number. To avoid numerical problems associated with the large condition
number, balancing is done before obtaining the eigenvalues.

The critical speeds of rotating disks were computed and compared to published results
for two special cases. Consider a #oppy disk having the following properties and
dimensions: E"4)9 GPa, l"0)33, o"1300 kg/m3, h"7)8]10~5 m, R

o
"0)1 m,

R
i
"0)025 m; and a saw blade having the following properties and dimensions:

E"193 GPa, l"0)33, o"7870 Kg/m3, h"1)65]10~3 m, R
o
"0)305 m, R

i
"0)043 m.

The boundary conditions are chosen such that the disk is clamped along the inner radius,
r"R

i
, and free along the outer radius, r"R

o
. Chonan [1] has shown that the critical

speeds for the #oppy disk and the saw blade are 230 r.p.m. (theoretically), and 1100 r.p.m.
(experimentally) respectively. In this study, a 64-element discretized domain, as illustrated in
Figure 1, is used in computing the eigenvalues. The critical rotational speeds are de"ned as
Figure 1. 64-Element disk problem.



TABLE 1

Comparison of non-dimensional natural frequencies

Mode [m, n]

[0, 0] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

Our results 12)86880 13)07891 14)15186 17)29894 23)99848 35)88012
Mote [2] 13)02426 13)28978 14)70381 18)56195 25)59583 35)73003
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the rotating speeds when the imaginary part of an eigenvalue becomes zero while the real
part of the eigenvalue remains zero (i.e., divergence instability). The "rst critical speed is
computed as 234)7 r.p.m. for the #oppy disk and 1139)7 r.p.m. for the sawblade respectively.
Those values agree to within 4% with those reported by Chonan [1].

For a stationary disk when the ratio of the inner radius to the outer radius is 0)5, the
natural frequencies were computed and compared to published data [2]. Results were
obtained using the following material properties and dimensions: E"65)5 MPa, l"0)3,
o"1200 kg/m3, h"0)0012 m, R

o
"0)065 m, R

i
"0)0325 m.

The computed natural frequencies are compared in Table 1. Here mode [m, n] denotes
the mode with m nodal circles and n nodal lines. The non-dimensional natural frequency, U,
is computed from the natural frequency, u, using the relation

U"C
ohR4

o
D

o
D
1@2

u,

where

D
o
"

Eh3

12(1!l2)
.

The maximum error between the results obtained here and those obtained by Mote is
7% [2].

3. DYNAMICS OF OPTICAL DISKS

The "rst generation of optical disk drives produced were read-only (RO) disk drives,
where heat sources are used only once for storing data at a factory, and optical heads are
used for reading data. Since an optical head is well away from the surface of the disk, the
interaction force between the disk and head may not be important in this case. The next
generation of optical disk drive is of the write-once-read-many-times (WORM) type in
which the heat source is used once at the user location to store data, and an optical head is
used for reading data. The latest type is an erasable optical disk drive utilizing a disk as in
hard disk drives. The magnetic-optical disk is most suitable in the application of the
erasable optical disk [3], where both heat sources and magnetic heads or optical heads may
be used. The analysis of such optical disk drives needs to include the e!ects of both
space-"xed transverse forces and heat sources. There are several di!erent standard
dimensions available for optical disks. For all cases, the thickness of single-sided optical
disks is 1)2 mm and that of double-sided optical disks is twice as much, or 2)4 mm. Here, the
case when the thickness is 1)2 mm is considered. The material widely used as the substrate
for optical disks is an optical grade of polycarbonate (PC), polymethylmethacrylate
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(PMMS), or glass. It is also proposed in this study to use a laminated disk with an
aluminum layer to improve the dynamic response. First, the dynamics of an isotropic disk
made of a substrate of an optical grade of polycarbonate (PC) will be presented.

3.1. DYNAMICS OF AN ISOTROPIC DISK

Here the model for the optical disk is chosen as C-130SR grade, which is typical of optical
disks in current use. The outer radius is 65 mm and the inner clamping radius is chosen as
15 mm. The surface of the optical disk has many pits, or grooves, along the data tracks
which are covered by several layers. But the depths of the grooves or the thickness of the
layers except the substrate are so tiny (0)06}0)12 lm, or 250}800 As ) that the existence of
those grooves or layers does not a!ect the global material properties to a signi"cant level.
Therefore, it is assumed that the material properties are the same as a disk made solely of
the substrate material (PC) of full thickness. The corresponding material properties and the
dimensions of the optical disk of interest are listed in Table 2.

The lowest 10 natural frequencies and their mode shapes for the stationary optical disk
are obtained as shown in Table 3. The real parts and the imaginary parts of the eigenvalues
for various rotational speed are obtained as in Figure 2. As can be seen in Figure 2, the
[0, 2] mode shows the "rst critical speed [divergence instability) at a speed of
X"112)5 rad/s or 1070 r.p.m. When the disk is rotating at a speed di!erent than the critical
speeds, not exceeding the critical speed for #utter instability, the disk is stable, because the
real parts of the eigenvalues remain zero, and the imaginary parts are positive.

If the rotation speed becomes larger, then some travelling wave frequencies coalesce. In
this case, the travelling waves of the [0, 4] and [0, 5] modes are shown to meet at X"265
and at 268)8 rad/s respectively. Once the rotation speed exceeds this #utter critical speed,
the disk becomes unstable, because the eigenvalue of the related modes has positive real
parts as shown in Figure 2.

It is clear that this optical disk made of a plastic substrate is not su$ciently sti!. The "rst
critical speed is X"112)5 rad/s or 1070 r.p.m. Considering the trend that the rotational
speed in disk drives continues to increase (e.g., 1800}2400 to 3000}3600 r.p.m.), this critical
speed is very low.

The impulse response and step response are both obtained for various rotation speeds,
and illustrated in Figures 3}7. It is noted that at the divergence critical speed, the impulse
TABLE 2

Material properties and dimensions of optical disk

Item Symbol Unit PC

Young's modulus E Pa 65)5]106
Shear modulus G Pa 25)2]106
Poisson's ratio l * 0)3
Density o kg/m3 1200
Heat capacity oc

p
J/m3 3K 1)51]106

Thermal conductivity k W/m 3K 0)0159
Thermal expansion coe$cient a m/m 3K 67)5]10~6

Thickness t m 0)012
Inner radius R

i
m 0)015

Outer radius R
0

m 0)065



Figure 2. Real and imaginary parts of eigenvalues versus rotational speed.

Figure 3. Transverse de#ection of optical disk (X"0): } } }, node 17; } ) }, node 33;**, node 49;**, node 65.
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response as in Figure 4 is bounded, while the forced response to a step input is divergent as
in Figure 5.

The response when X"263 rad/s is stable, while that of X"264 rad/s diverges as shown
in Figures 6 and 7. Figure 6 shows a beating phenomenon, because the two frequencies are
very close to each other. This can be veri"ed by examining Figure 2. Two travelling waves



Figure 4. Transverse de#ection of optical disk (X"112)5 rad/s); key as for Figure 3.

Figure 5. Transverse de#ection of optical disk (step force and X"112)5 rad/s); key as in Figure 3.

Figure 6. Transverse de#ection of optical disk (X"263 rad/s); key as for Figure 3.
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almost coalesce when X"263, therefore, the beating phenomenon occurs. However, at
X"264 rad/s the real part of the eigenvalue for this [0, 4] mode becomes positive, leading
to a #utter instability.

Next, consider the e!ect of a heat source on the dynamic response of the disk. There may
be some di$culties, due to very di!erent time constants between temperature and dynamic
de#ections, in clearly assessing the e!ect of temperature distribution on the dynamics of the
rotating disk. It usually takes a long time for the temperature distribution to reach its steady
state, while the mechanical dynamics of the disk is very fast.



Figure 7. Transverse de#ection of optical disk ()"264 rad/s); key as for Figure 3.

Figure 8. Initial temperature distribution of optical disk.
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The following approach was used in this study to consider the e!ects of temperature
distribution in the analysis [4]. First, the thermal and bending problems are uncoupled and
the temperature distribution, having a large time constant, is obtained using larger time
increments until it reaches an equilibrium. During this stage the computation of the
in-plane or out-of-plane responses is almost meaningless, because the time increment is too
large for the accuracy of the dynamic de#ections. Hence, the deformations are assumed to
be zero and the e!ect of de#ection on the temperature distribution is neglected during this
stage. Then, the temperature distribution is used as an initial temperature distribution, and
the coupled thermal and plate bending problems are solved. In this way, one can circumvent
having to integrate over a su$ciently small time increment enough to accurately catch the
history of de#ections, during the long time period when the temperature reaches its
equilibrium or near equilibrium state.

Here, the temperature at the inner radius was speci"ed as increased by 803C and that at
the outer radius was speci"ed as increased by 203C. Since the time constant for the thermal
problem is very large, it is necessary to integrate for a long time to get a converged
temperature distribution. The temperature distribution over the domain at the converged
state (t"2]105 s) is illustrated in Figure 8, and the time history of temperature at several



Figure 9. Time history of temperature of optical disk (X"0): - - -, node 1; } }}, node 17; } ) }, node 33;
* * , node 49; **, node 65.

TABLE 3

Comparison of natural frequencies for an optical disk and a prestressed disk

Optical disk Prestressed disk

Mode Mode shape Frequency Mode Mode shape Frequency

1/2 [0, 1] 1.067627E#02 1 [1, 0] 7.640946E#02
3 [1, 0] 1.115264E#02 2/3 [0, 1] 8.881420E#02
4/5 [0, 2] 1.326079E#02 4/5 [0, 2] 1.981739E#02
6/7 [0, 3] 2.427173E#02 6/7 [0, 3] 3.466040E#02
8/9 [0, 4] 4.230415E#02 8/9 [0, 4] 5.395710E#02
10 [0, 5] 6.720320E#02 10 [2, 0] 6.716963E#02
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nodal points for a time period of [0)2]105] s is shown in Figure 9. It can be seen that the
temperature reaches a steady state concentric temperature distribution. This temperature
distribution is used as an initial condition for the study of the e!ect of initial temperature.
Due to this initial temperature distribution there is a residual stress which a!ects the
dynamic characteristics of the disk. The natural frequencies of optical disks and those of
prestressed optical disks are compared in Table 3. The real parts and the imaginary parts of
the eigenvalues for prestressed disks with varying rotational speed are obtained as in Figure
10. And their mode shapes are illustrated in Figure 11. It is shown that the "rst critical speed
for the divergence instability is increased in the prestressed disk even though the lowest
eigenvalue for the stationary case was lower than the unstressed optical disk. The "rst
critical speed is 167 rad/s or 1590 r.p.m., which is well beyond the previous critical speed of
112)5 rad/s or 1070 r.p.m. The reason why the prestressed disk has the higher critical speed
is interesting. Although the prestressed disk has the smaller lowest eigenvalues when X"0,
those lowest mode frequencies tend to increase as the rotational speed increases. The "rst
divergence critical mode is the [0, 2] mode for both the optical disk and the prestressed disk.
Accordingly the eigenvalues of the [0, 2] modes for the prestressed disk and the optical disk
a!ect the "rst critical speed. The eigenvalues of the [0, 2] mode of the prestressed disk are
1)49 times that of the unstressed disk, and the "rst divergence critical speed turns out to be
1)48 times that for the unstressed optical disk.

The impulse responses were obtained (not shown here) for various rotational speeds X,
and show trends similar to those in Figures 3}7.



Figure 10. Real and imaginary parts of eigenvalues versus rotational speed for prestressed disk.
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3.2. DYNAMICS OF A LAMINATED OPTICAL DISK

A disk of a laminate material composed of polycarbonate (PC) and aluminium layers is
studied in this section. While a very thin aluminum layer of thickness 500}600 As is usually
coated onto optical disks, here the aluminum layer is chosen much thicker so that the e!ect
of this layer on the dynamic behavior of a composite disk can be readily observed. Thus, the
volume fraction of aluminum is chosen as 25%.

In order to obtain the material properties of this laminate, the homogenization method
was used. Due to the simplicity of the material system used in this example, the rule of
mixtures can also be used. In fact, the thermal properties of the laminated disk are obtained
using a rule of mixture instead of the homogenization method. The material for each layer is
assumed to be isotropic and homogeneous. The properties of the laminate are, however,
specially orthotropic. Table 4 speci"es the properties of the material for each layer.

The homogenized orthotropic elastic material properties obtained are C
1111

"C
2222

"

17)11 GPa, C
1122

"C
2211

"5)148 GPa, C
1212

"C
2121

"C
1221

"C
2112

"5)980 GPa,
C

1313
"C

2323
"0)0336 GPa, C

imjn
"0 otherwise.

By using the relations between the elasticity tensor and the directional material
properties one can directly compute the directional properties: l

21
"C

1122
/C

1111
,



Figure 11. The lowest 10 mode shapes for prestressed disk: (a) [0, 0] mode, 7)6 rad/s; (b) [0, 1] mode, 89 rad/s;
(c) [0, 1] mode, 91 rad/s; (d) [0, 2] mode, 198 rad/s; (e) [0, 2] mode, 199 rad/s; ( f ) [0, 3] mode, 347 rad/s; (g) [0, 3]
mode, 347 rad/s; (h) [0, 4] mode, 540 rad/s; (i) [0, 4] mode, 540 rad/s; ( j ) [1, 0] mode, 672 rad/s.

TABLE 4

Materials properties of raw materials

Item Symbol Unit PC Aluminum

Young's modulus E Pa 65)5]106 62)0]109
Shear modulus G Pa 25)2]106 24)0]109
Poisson's ratio l * 0)3 0)3
Density o kg/m3 1200 2700
Thickness t m 0)009 0)003
Heat capacity oc

p
J/m3 3K 1)51]106 2)44]106

Thermal conductivity k W/m 3K 0)0159 237
Thermal expansion coe$cient a m/m 3K 67)5]10~6 22]10~6
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The orthotropic thermal conductivities and thermal expansion coe$cient of the
composite were obtained by using the rule of mixtures and are given in Table 5.



TABLE 5

Material properties of composite material

Item Symbol Unit A1 25%#PC

Young's modulus E
1

GPa 15)56
E
2

GPa 15)56
Shear modulus G

12
GPa 5)980

G
13

GPa 0)03358
G

23
GPa 0)03358

Poisson's ratio l
12

* 0)3009
l
21

* 0)3009
Density o kg/m3 1575
Thickness t m 0)0012
Heat capacity oc

p
MJ/m3 3K 1)740

Thermal conductivity k
11

W/m 3K 59)26
k
22

W/m 3K 59)26
Thermal expansion coe$cient a

11
m/m 3K 0)213]10~6

a
22

m/m 3K 0)213]10~6
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The lowest 10 mode shapes were obtained for this laminated disk. Figure 12 shows
the mode shapes of this laminated disk, but some mode shapes look quite unusual.
The fourth, seventh, and eighth mode shapes show that some elements are very highly
deformed. Such severe deformations must generate a high strain energy within the
body. Accordingly those modes, if they are in fact mode shapes, should have eigenvalues
of very large magnitudes. Actually they posses an &&w-hourglass mode'', which is the
result of applying the selective reduced integration scheme in the integration of the
four-node bilinear plate element based on Mindlin plate theory. The rank de"ciency
due to this reduced integration method is "xed by a special procedure for interpolating
the transverse shear strains [5]. The scheme uses a &&correct-rank, four-node bilinear
element''. Using this element, the lowest 10 mode shapes are correctly obtained as shown in
Figure 13.

The "rst divergence critical speed of this laminated disk is 2890 rad/s, or 27 600 r.p.m.
Thus, it can be said that this kind of disk can withstand the high rotational speeds
typical of a high speed disk drive. The transverse de#ection versus time has been
obtained when the rotation speed of the disk is 377 rad/s, or 3600 r.p.m. and is shown in
Figure 14.

In order to consider the e!ect of a heat source on the transverse de#ection, "rst the
thermal and bending problems are decoupled and the temperature distributions after
t"400 s with the rotational speed of 377 rad/s (3600 r.p.m.) or 2891 rad/s (27 600 r.p.m.)
are obtained. This temperature distribution is then used as an initial condition. Here,
the temperature at the clamped radius is speci"ed as being increased by 803C, and
the outer radius is speci"ed as being increased by 203C, and the temperature of the
ambient air is 03C. The time histories of temperature during this time period at several
nodes are shown in Figures 15 and 16. Notice that the temperature distribution inside the
domain, for the case with X"2891 rad/s, becomes lower due to the larger heat convection
coe$cients for larger rotational speed. The "rst divergence critical speed for this case
is 2891 rad/s, which is very close to the critical speed 2890 rad/s for the case without
thermal e!ect. The impulse responses are obtained at the rotational speed of 3600 r.p.m. in
Figure 17.



Figure 12. The lowest 10 mode shapes for laminated disk (without hourglass control): (a) [0, 0] mode,
966]106 rad/s; (b) [0, 1] mode, 133]107 rad/s; (c) [0, 1] mode, 133]107 rad/s; (d) hourglass, 165]107 rad/s;
(e) [0, 2] mode, 316]107 rad/s; (f ) [0, 2] mode, 316]107 rad/s; (g) hourglass, 317]107 rad/s; (h) hourglass,
317]107 rad/s; (i) [0, 3] mode, 575]107 rad/s; ( j) [0, 3] mode, 575]107 rad/s.
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It was shown that the optical disk studied in the preceding section was greatly a!ected by
temperature. In this laminated disk case, however, the e!ect of temperature is remarkably
reduced.

The very general formulation in Part I enables one to include any complex temperature
distribution in the analysis of the dynamic de#ections. To emphasize this capability, a case
when a temperature distribution is not axisymmetric is considered. Here the temperature at
the inner radius was speci"ed as increased by 60}803C and that at the outer radius was
speci"ed as increased by 20}403C. The temperature distribution over the domain at the
converged state (t"200 s) is illustrated in Figure 18, and the time history of temperature at
several nodal points for a time period of [0, 200] s is shown in Figure 19. The real parts and
the imaginary parts of the eigenvalues for prestressed disks with varying rotational speed
are obtained as in Figure 20. The mode shapes are illustrated in Figure 21. Since the e!ect of
temperature on the dynamic de#ections is very small in this laminated disk case, the e!ect of
non-symmetric temperature distribution is small too. The "rst divergence critical mode is
the [0, 8] mode.



Figure 13. The lowest 10 mode shapes for laminated disk (with hourglass control): (a) [0, 0] mode,
9)63]106 rad/s; (b) [0, 1] mode, 1)33]107 rad/s; (c) [0, 1] mode, 1)33]107 rad/s; (d) [0, 2] mode, 3)13]107 rad/s;
(e) [0, 2] mode, 3)13]107 rad/s; ( f ) [0, 3] mode, 5)71]107 rad/s; (g) [0, 3] mode, 5)71]107 rad/s; (h) [0, 4] mode,
8)25]107 rad/s; (i) [0, 4] mode, 8)25]107 rad/s; ( j ) [0, 5] mode, 1)03]108 rad/s.

Figure 14. The transverse de#ection of laminated disk (X"377 rad/s); key as for Figure 3.
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Figure 15. Time history of temperature of laminated disk (X"377 rad/s); key as for Figure 3.

Figure 16. Time history of temperature of laminated disk (X"2891 rad/s); key as for Figure 3.

Figure 17. Impulse response of prestressed laminated disk, key as for Figure 3.
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4. SUMMARY AND CONCLUSIONS

This paper utilizes a "nite element approach, described in detail in reference [4], to
investigate the e!ects of transverse loads, prestresses and heat sources on the dynamics of
rotating specially orthotropic disks.



Figure 18. Initial temperature distribution of laminated disk.

Figure 19. Time history of temperature of laminated disk, key as for Figure 3.
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A case study for optical disks was done in detail. Isotropic material properties were
assumed for the "rst example. The eigenvalues and the corresponding mode shapes as
parametrized by the rotational speed were obtained. It was shown that in most cases,
the two nodal line mode [0, 2] was the mode that results in the "rst divergence
critical speed. The time responses are shown at various rotational speeds. The divergence
instability and the #utter instability were observed through the time responses. Also the
beating phenomenon was shown and explained. In order to observe the e!ect of
a temperature gradient on the dynamics of rotating disks, an initial temperature
distribution was obtained and used. This prestressed disk showed di!erent eigenvalues than
the unstressed disk, and the choice of the initial temperature distribution happens to
increase the magnitude of the "rst divergence critical speed and the "rst #utter critical speed
signi"cantly.



Figure 20. Real and imaginary parts of eigenvalues versus rotational speed for prestressed laminated disk.
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A laminated optical disk, which reinforces the conventional optical disk with a thin
aluminum layer, was studied. This laminated disk has a 25% volume fraction of aluminum.
The homogenization method and the averaging methods were used to compute the
orthotropic elastic and thermal material properties of the laminated disk. The w-hourglass
control e!ect is shown in this study. This choice of the laminated disk showed an increase of
the "rst divergence critical speed of 26 times. A temperature gradient similar to the one
considered previously is initially given to the laminated disk and it was shown that the e!ect
of temperature was remarkably reduced.

The conclusions of this research can be summarized as follows: (1) The temperature
gradient can signi"cantly change the dynamics of disks, especially for the case of
optical disks, where the material is weak and the thermal expansion coe$cient is large. (2)
The orthotropic material properties of the laminated disk can have a large e!ect on the
overall dynamics of disks. The laminated disk chosen in this study increases the "rst
divergence critical speed signi"cantly and reduces the e!ect of temperature on the
de#ection.



Figure 21. The lowest 10 node shapes of prestressed laminated disk: (a) [0, 0] mode, 3)10]103 rad/s; (b) [0, 1]
mode, 3)64]103 rad/s; (c) [0, 1] mode, 3)64]103 rad/s; (d) [0, 2] mode, 5)60]103 rad/s (e) [0, 2] mode,
5)60]103 rad/s; ( f ) [0, 3] mode, 7)56]103 rad/s; (g) [0, 3] mode, 7)56]103 rad/s; (h) [0, 4] mode, 9)08]103 rad/s;
(i) [0, 4] mode, 9)08]103 rad/s; ( j ) [0, 5] mode, 1)01]104 rad/s.
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